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Dendrophilia

Fitch [2014]
Experiments to date strongly suggest that there is an important differ-
ence between humans and most other species, best characterized cog-
nitively as a propensity by our species to infer tree structures from se-
quential data.

I How does this work exactly?
I Tree structures are inadequate for natural language syntax.
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Strings and trees and something else

Naively we are dealing with three sorts of objects:
1. Strings of words
2. Constituent structures
3. and something else to handle movement?

This is theoretically bad.
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Sequential data: string

She likes cookies.
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Hierarchically structured data: Tree

S

VP

NP

cookies

V

likes

NP

she
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Movement [Richards, 1997]
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Derivation tree of MG [Torr, 2019]
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Non-projective dependency structures [McDonald et al., 2005]
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HPSG feature structures [Borsley and Crysmann, 2021]
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Proof Nets [Moot, 2002]
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Desiderata

I Descriptively adequate
I Easy for humans to reason about

I Natural diagrams on a 2d page
I Have clean mathematical properties

I Where do these structures come from?
1. Processing: efficiently parseable
2. Acquisition: learnable from evidence available to the child
3. Cultural Evolution: why do languages have these structures?
4. Biological Evolution: why do we have the ability to learn these structures?
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5 minute introduction to strings and trees and 3d trees
Rogers [2003]

How to construct a string of length 2 ab?
I Take a and b and concatenate them to make ab.
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Construction of a string

How to make a string abc?
1. a and b → ab.
2. ab and c → abc

OR
1. b and c → bc.
2. a and bc → abc
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Construction of a string

We can represent these as trees:
X

Y

a b

c

X

a Y

b c
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Construction of a string

X

Y

A

a

B

b

C

c

X

A

a

Y

B

b

C

c
Finite amount of state + Markov assumption gives (probabilistic/weighted)
context-free grammars
X → YC , A→ a, B → b, . . .
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Construction of a trivial tree

How to make the tree f

a b

?
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Construction of a trivial tree
We assemble three parts: f

· ·

and a and b → f

a b

Two sorts of objects
I Rank 2: f

· ·

I Rank 0: a b f

a b
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Construction of a bigger tree

How to make the tree g

f

a b

c

?
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Construction 1

1. f

· ·

and a and b → f

a b

2. g

· ·

and f

a b

and c → g

f

a b

c
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Construction 2

1. g

· ·

and f

· ·

and c → g

f

· ·

c

2. g

f

· ·

c

and a and b → g

f

a b

c
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Represent these construction methods as trees

X

g Y

f a b

c

X

Y

g f c

a b

These aren’t trees! They are 3d trees
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3d trees

string: one relation a b c

tree: two relations

a

b c

d e
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3d trees
Horrible diagram

a

b

c d

e

f g

h

i j
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Footed linear context-free tree grammars
Finite amount of state + Markov assumption gives you a standard mildly
context-sensitive formalism, equivalent to TAG, CCG, LIG, well-nested MCFGs
of dimensions 2, etc.

A0 → B2

C0 D0

A2

· ·

→ B2

C2

· ·

D0

A2

· ·

→ B2

C0 D2

· ·
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Two step derivation

X

Y

g f c

a b

constructs g

f

a b

c

constructs abc

25 / 77



Dendrophilia
squared

Alexander Clark

Syntactic
Structure

Learning Trees
from Strings
Probabilistic grammars

Learning PCFGs
from strings
Distributional learning

English CDS

Simulations with synthetic
data

Learning tree
grammars from
strings

Well-nestedness

Discussion

References

Same operation twice
X

Y

g f c

a b

constructs g

f

a b

c

constructs a

b

c

.

Main point of this talk
We can use the same learning operation twice.
1. Learn CFGs from strings [Clark and Fijalkow, 2020]
2. Learn these context-free tree grammars from trees. [Clark, 2021]
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Strong learning
Horning [1969]

Ignore the (unobserved) semantics, and try to generate the right set/distribution
of trees (t) and strings (s):

Input forms according to Gparent
s1, . . . , sk , . . . . . .

Output Require that P(t;Gchild) ≈ P(t;Gparent) and
P(s | t;Gchild) ≈ P(s | t;Gparent)

I Realizability assumption: the samples are drawn i.i.d. according to a
grammar in the class we are learning.

I Consistent estimator: should converge to the true grammar and parameters.

27 / 77



Dendrophilia
squared

Alexander Clark

Syntactic
Structure

Learning Trees
from Strings
Probabilistic grammars

Learning PCFGs
from strings
Distributional learning

English CDS

Simulations with synthetic
data

Learning tree
grammars from
strings

Well-nestedness

Discussion

References

Context Free Grammars
CFG in Chomsky Normal Form:
Set of productions P of the form A→ BC or A→ a
S only occurs on the left hand side of productions.

Tree Context
a�c

Yield
b

split into

S

D

C

c

B

b

A

a

S

D

C

c

B

A

a

B

b
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Context Free Grammars

I Label derivation tree with productions

πS

πa πD

πb πc

= πS

πa �D

⊕ πD

πb πc

Notation
Ω(A) is the set of all trees with A at the root.
Ξ(A) is the set of all contexts of A, with S at the root.
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Weighted Context Free Grammars
Smith and Johnson [2007]
Parameter θ for each production in R+, defines the weight of a tree as

w(τ) =
∏
π

θ(π)n(π;τ)

For each nonterminal A define:

I(A) = w(Ω(A)) (sum over yields)

O(A) = w(Ξ(A)) (sum over contexts)

Stipulate that I(S) = 1 and define P(τ) = w(τ)

P(s | τ) =
{
1 if s is the yield of τ
0 otherwise
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Probabilistic Context Free Grammars

Trivial Identity for WCFGs

I(A)O(A) = E(A)

Stipulate that I(A) = 1, and so O(A) = E(A). Each nonterminal defines a
probability distribution over its yields.
Parameters are in [0, 1] and satisfy:

θ(A→ BC) = E(A→ BC)
E(A)

θ(A→ a)) = E(A→ a)
E(A)

Parameters have interpretation as conditional probabilities in a top down
generative process starting with S.
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Bottom up parameterization of Weighted CFGs

Trivial Identity for WCFGs

I(A)O(A) = E(A)

Stipulate that O(A) = 1, and I(A) = E(A): each nonterminal defines a
probability distribution over its contexts.
Parameters are no longer in [0, 1] but satisfy:

θ(A← BC) = E(A← BC)
E(B)E(C)

θ(A← a) = E(A← a)
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Identifiability from trees

θ(A→ BC)︸ ︷︷ ︸
parameter

of the grammar

= E(A→ BC)
E(A)︸ ︷︷ ︸

depends only on
distribution over trees

I We can’t have two PCFGs that generate the same distribution over trees:
P(t;G1) = P(t;G2) implies G1 = G2

I This gives us a recipe to learn the parameters: count and normalise.
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The major problem:
Non identifiability of PCFGs and CFGs from strings [Hsu et al., 2013]

We can have two PCFGs that generate the same distribution over strings; for
example P(abc) = 1

S

A

a

D

B

b

C

c

S

D

A

a

B

b

C

c
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Distributional learning

I The kitten is over there.
I I want a kitten for Christmas.
I What a cute kitten!

The work "kitten" occurs in these contexts:
I The � is over there.
I I want a � for Christmas.
I What a cute �!

So does "dog". But the word "the" does not.
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Probabilistic language

Given a probability distribution, P, over strings of symbols (Σ∗).

Distributional distribution
A string u defines a probability distribution u over its contexts:

l�r has probability P(lur)
E(u)
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Anchored Context Free Grammars
Stratos et al. [2016]

Assume that for every nonterminal A there is a terminal a which occurs only in
the production A→ a.
Reasonable assumption if number of words is much greater than number of
nonterminals.

Example in English
I she (NP)
I the (Det)
I kitten (N)
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The strings
she and the kitten

The production
NP → Det N

Two old ideas [Harris, 1955]:
1. There should be high MI between the and kitten
2. she and the kitten should occur in the same contexts

she and the kitten should be similar.
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Divergence between context distributions

Rényi divergence, α =∞, between discrete distributions P and Q:

R∞ (P‖Q) = log sup
x

P(x)
Q(x)

I Asymmetric
I Satisfies triangle inequality
I In [0,∞]

Define for strings u and v

R∞ (u‖v) = log sup
l ,r

P(lur)/E(u)
P(lvr)/E(v)
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Two further conditions

Strict Upward Monotonicity
Adding any new production will increase the set of strings generated by the
grammar.

Local Unambiguity
A weak condition limiting how ambiguous the grammar is:
For every production A→ α, there is a string which always uses that production
"in the same place".
For π = A← BC , there is a string w = luvr such that

Ω(S,w) = Ξ(A, l�r)⊕ π(Ω(B, u),Ω(C , v))
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Under these three conditions:

Given nonterminals A,B,C anchored by a, b, c resp.:

log θ(A← BC)︸ ︷︷ ︸
bottom-up parameter

= log E(bc)
E(b)E(c)︸ ︷︷ ︸

PMI of rhs

− R∞ (a‖bc)︸ ︷︷ ︸
divergence of lhs from rhs

Right hand side depends only on the distribution over strings.
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Lexical rule

Given nonterminal A anchored by a, and a terminal d :

log θ(A← d)︸ ︷︷ ︸
bottom-up parameter

= logE(d)︸ ︷︷ ︸
lexical frequency

− R∞ (a‖d)︸ ︷︷ ︸
divergence of lhs from rhs
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Identifying terminals as anchors
Context distributions of all terminals will lie in the convex hull of the anchors:

a b

c

d

R∞
(a‖

d)

R∞
(d‖

a) =∞

R∞ (a‖b) = R∞ (b‖a) =∞
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Theorem [Clark and Fijalkow, 2020]

There is a computationally efficient (trivial) consistent estimator from strings,
for all PCFGs whose underlying CFG is
1. In Chomsky Normal Form
2. Anchored
3. Strictly Upward Monotonic
4. Locally Unambiguous

Using naive plug-in estimators that are slow to converge.

Identifiability
For this class of grammars P(s | G1) = P(s | G1) implies G1 is isomorphic to G2.
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Positive Discussion

The first1 strong probabilistic result for learning PCFGs for strings. (in 2020!)
I Hyper-parameter free; Input is just a sequence of strings.
I Learns

I The nonterminals, and how many there are
I The lexicon
I The syntactic rules for combining these categories
I The correct probabilities for each production.

1with some caveats.
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The grammar is the parser [Phillips, 1996]

This algorithm contains no parsing:
I Which comes first the parser or the grammar?

Formalised as a grammar learning algorithm:
I One can equally well parse on the fly using just exemplars, and get the same

argmaxtP(t | s).
I Then the best parse is the shortest path from the yield to S: [Klein and

Manning, 2005], using R∞ (·‖·) as a distance
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Critical Discussion

Any learning theorem
If conditions are satisfied then we learn under some model.
Two questions:
I Is the antecedent too strong?
I Is the consequent too weak?

I Do natural languages satisfy these conditions? Putting aside the intrinsic
limitations of CFGs.

I The theorem says nothing about the speed of convergence: are the
algorithms too slow to converge?
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Do natural languages fit in this class?

Obviously not since CFGs are inadequate but are the assumptions reasonable?
A nonterminal A can have no anchors if:
I It doesn’t generate any strings of length 1.
I Or all of them are ambiguous.

We can look at a syntatically annotated corpus of English Child directed speech
[Pearl and Sprouse, 2012].
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Corpus study
t P(l = 1) wmax P(t|wmax)

ADJP 0.67 careful 0.85
ADVP 0.84 already 1.0
FRAG 0.3 seal 0.2
INTJ 0.87 hmm 1.0
NP 0.7 he 1.0
PP 0.078 for 0.13
PRT 0.99 off 0.72
S 0.017 - -
SBAR 0.0046 if 0.0024
SBARQ 0.0 - -
SQ 0.021 - -
VP 0.11 crying 0.82
WHADVP 0.98 when 1.0
WHNP 0.8 who 0.95
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Weak learning hierarchy
[Clark and Yoshinaka, 2016]

Instead of having a single
anchor a, have a small set of
strings w1, . . . ,wk , of arbitrary
length, such that the shared
distribution of these strings
correctly defines the
nonterminal.
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Computational experiments

I Language acquisition happens not asymptotically but with fairly small
amounts of data: in the worst cases the divergences are very hard to
estimate.

I What happens if the conditions don’t hold, or hold only approximately?
Replace a simple algorithm that is easy to analyse with something more data
efficient.
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Protocol for simulations

I Generate synthetic grammars that match the observed statistical properties
of Child-Directed Speech:
I distribution of sentence lengths (zero truncated Poisson, mean 5)
I Zipfian unigram distribution

I |V | = 10, |Σ| = 1000, with all CNF productions allowed.
I Control ambiguity with a Dirichlet hyperparameter α for the binary rules.
I Sample 106 strings for a training set.
I Give true number of nonterminals (10) to the algorithm.
I Evaluate using supervised parsing metrics on 103 trees, with a maximum

length of 20.
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Implementation

I Standard NLP techniques: cluster words based on local distributional
context to get a low dimensional approximation.

I Approximate R∞ (·‖·) with R5
I Three outputs:

A Bottom up WCFG
B plus 1 iteration of EM
C plus 10 iterations of EM

I Set hyperparameters (a few thresholds etc), debug etc. on some example
grammars and then test on fresh grammars without any further tuning.
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Discussion

I None of the grammars here satisfy the conditions since they contain all
productions.

I The hypothesis class of the learner now is effectively all grammars in CNF.
I Cheap algorithms ($1 per language).
I Learning the number of nonterminals is straightforward but a bit more

expensive, and complicates the evaluation.
I These are an order of magnitude smaller than natural language grammars;

but we can learn nearly all of them effectively.

Take-home point
In the average case, PCFGs are strongly learnable if they are not too ambiguous.
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Weak and strong inadequacy of CFGs

Shieber [1985] showed that CFGs are weakly inadequate but we already knew
that they were strongly inadequate (e.g. Gazdar et al. [1985]).

One step up: Vijay-Shanker and Weir [1994]
Four equivalent formalisms: here we use the first one:
I Tree-adjoining grammar via footed simple context-free tree grammars

[Kepser and Rogers, 2011]
I Head grammars: well-nested multiple CFGs of dimension 2 [Seki et al.,

1991]
I Linear Indexed Grammars
I Combinatory Categorial Grammar
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A stochastic language of binary trees

f

c g

g

a a

h

b b
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Generalise the notion of context

g occurs in the contexts f

c �

g

a a

h

b b

f

c g

�

a a

h

b b

60 / 77



Dendrophilia
squared

Alexander Clark

Syntactic
Structure

Learning Trees
from Strings
Probabilistic grammars

Learning PCFGs
from strings
Distributional learning

English CDS

Simulations with synthetic
data

Learning tree
grammars from
strings

Well-nestedness

Discussion

References

[Rogers, 2003]
πS

πA

πm πa πA′

πB

πm πb πB′

πc πm πb

πm πa

πd πd

−→ m

a m

b c

m

m

d d

a

b

−→ a bdd a b

3d-tree 2d-tree
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Same parameter identities

log θ( A2

· ·

→ B2

C2

· ·

D0

) = MI( b

c

· ·

d

)−R∞( a

· ·

|| b

c d

· ·

)
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Result [Clark, 2021]

Exactly the same algorithm except we need to handle nonterminals of rank 0 and
rank 2 and perhaps more.
I Anchored
I Locally unambiguous
I Strictly upward monotonic

Dendrophilia-squared
Apply the same algorithm twice:
1. Apply to strings (1d trees) to get some surface structure trees (2d trees)
2. . . .
3. Apply to 2d trees to get a "deep structure" derivation tree.

Can we go directly from strings to a suitable structure?

63 / 77



Dendrophilia
squared

Alexander Clark

Syntactic
Structure

Learning Trees
from Strings
Probabilistic grammars

Learning PCFGs
from strings
Distributional learning

English CDS

Simulations with synthetic
data

Learning tree
grammars from
strings

Well-nestedness

Discussion

References

Result [Clark, 2021]

Exactly the same algorithm except we need to handle nonterminals of rank 0 and
rank 2 and perhaps more.
I Anchored
I Locally unambiguous
I Strictly upward monotonic

Dendrophilia-squared
Apply the same algorithm twice:
1. Apply to strings (1d trees) to get some surface structure trees (2d trees)
2. . . .
3. Apply to 2d trees to get a "deep structure" derivation tree.

Can we go directly from strings to a suitable structure?

63 / 77



Dendrophilia
squared

Alexander Clark

Syntactic
Structure

Learning Trees
from Strings
Probabilistic grammars

Learning PCFGs
from strings
Distributional learning

English CDS

Simulations with synthetic
data

Learning tree
grammars from
strings

Well-nestedness

Discussion

References

Wellnestedness

A

B

u

C

D

· ·

E

v

When we consider it as a string is u�v
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u v x y

Well-nested

u vx y u v x y

Not well-nested

u vx y
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Well-nestedness
Kanazawa and Salvati [2012]

I Productions can be binarised, which implies more efficient parsing
[Gómez-Rodríguez et al., 2010]

I Excludes excessively free word order (mix language) [Kanazawa and Salvati,
2012]

I Corpus studies suggest it generally holds [Kuhlmann and Nivre, 2006].
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Corpus: Kuhlmann and Nivre [2006]

Danish (DDT) Czech (PDT)
projective 84.95% 76.86%
well-nested 99.89% 99.89%
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Simplistic model

The more you learn the easier it is to learn: but how does the whole process
start? There are regularities that learners can and do exploit, but they need to
know them first.
I Ignores other information sources:

I Phonology: Morgan and Demuth [1996]
I Semantics: Pinker [1996],Abend et al. [2017]

I Can’t expect a single model to account for all of language acquisition.
I The two steps do not fit together:

I Even if we have a perfect grammar we still need semantics to recover some
structure needed as input to the second phase.

I What are the symbols in the trees?
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Desiderata

I Descriptively adequate
I Easy for humans to reason about

I Natural diagrams on a 2d page
I Have clean mathematical properties

I Where do these structures come from?
1. Processing: efficiently parseable
2. Acquisition: learnable from evidence available to the child
3. Cultural Evolution: why do languages have these structures?
4. Biological Evolution: why do we have the ability to learn these structures?
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Pure Speculation

Questions
I How can we account for the origin of "movement"?
I Why are there syntactic islands as constraints?

A sketch of an argument:
I Dendrophilia will apply to trees as well as strings unless stipulated otherwise.
I Strict Upward Monotonicity implies that all "legal" rules will be learned: so

the learner must hypothesize "movement" rules when the situation permits.
I Local Unambiguity implies that we must have restrictions on movement or

the tree grammar component will be too ambiguous.
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Take home points

Technical claim
Learning large classes of phrase structure grammars, including mildly
context-sensitive grammars, defined by explicit structural constraints is possible
just from strings; in a computationally efficient, strong, probabilistic model.

Theoretical claims
I Early acquisition of syntax is driven by distributional learning.
I We can unify various levels of syntactic structure using multidimensional

trees [Rogers, 2003].
I Movement is acquired by the same mechanism as phrase structure

acquisition.
I Well-nestedness seems to be an important restriction.
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